Results-Oriented Program Formulation

Session 2. Context, Rationale and Terminology

Objectives of Session 2

- Discuss Research Program Formulation as an integral part of planning
- Discuss time frames of the different planning levels
- Discuss Program Formulation within the Innovation Systems Paradigm
- Discuss Program Formulation Steps

Research Program Formulation

- Concerned with planning the necessary and sufficient programs
- Ends with identification of projects and indicators for impact assessment and M&E
- Long-term program planning is one part of the overall agricultural research and extension planning process

Research Program Formulation (Cont)

- Other components of an agricultural research and extension plan address the policy and strategy, the organizational structure, and the development of human, physical and financial resources
- Program formulation is linked with the design of both the agricultural research and extension policy and the strategic plan

Time Frames of the Different Planning Levels

- Research and extension policy design and strategic planning (10 – 15 years) define the goal, vision and the mission of research and development
- Long-term program formulation (8 10 years) stops at the identification of projects, the human resources requirements and indicators for impact assessment and M&E
- Project planning starts where long-term program formulation stops
- Annual work plans describe the activities, experiments and/or studies as well as the resources necessary for the following year

Importance of Paradigm in Shaping Planning Outcomes and Impact

- The outcomes and impact from planning depend on the paradigm that is guiding the planners
- The paradigm shapes our vision and what we prioritize
- The paradigm shapes the outcomes and impacts to achieve the vision

Planning- a Value Based Process

Planning Perspective for AR4D

- An agricultural research organization may plan from any one of at least five perspectives or values:
 - Scientific excellence
 - Scientific excellence and relevance to target group
 - Productivity gains
 - Productivity gains and environmental integrity
 - Income generation (Poverty reduction, wealth creation)
- Which ones is FPDA using?

The Agricultural Research for Development (AR4D) Paradigm

- Assumes the perspective of much wider peoplelevel goal and impacts
- Examples are:
 - The UN Millenium Development Goals (MDGs) to halve hunger and poverty by 2015
 - PNG's goal to stimulate economic growth in the agriculture sector in all districts,, involving the full participation of stakeholders, which promotes food security, income generation and poverty alleviation

The Agricultural Research for Development (AR4D) Paradigm

- AR4D goals will take much more than the role of researchers and extension services to achieve
- The innovation systems paradigm addresses this through partnerships of diverse stakeholders
- Therefore, the institutional frameworks vary with the assumed paradigm and priorities

Program Formulation Within the Innovation Systems Paradigm

- Program formulation depends on the paradigm at strategic planning level
- The paradigm shapes the vision and mission of the organization to which the programs should contribute
- Research should ultimately result in peoplelevel impact

Characteristics of a Good Research and Extension Program

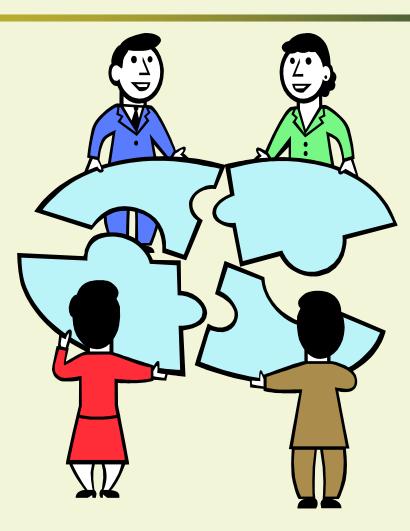
- Should be effective
 - Responds to national, sub-regional, regional or even global development objectives and to users' needs
- Should be efficient
 - Objectives are realistic in terms of resources
- Should be necessary
 - Builds on past research and uses opportunities to learn from outside
- Should be comprehensive and sufficient
 - All projects necessary to reach the objectives have been included

Terminologies Used in Program Formulation

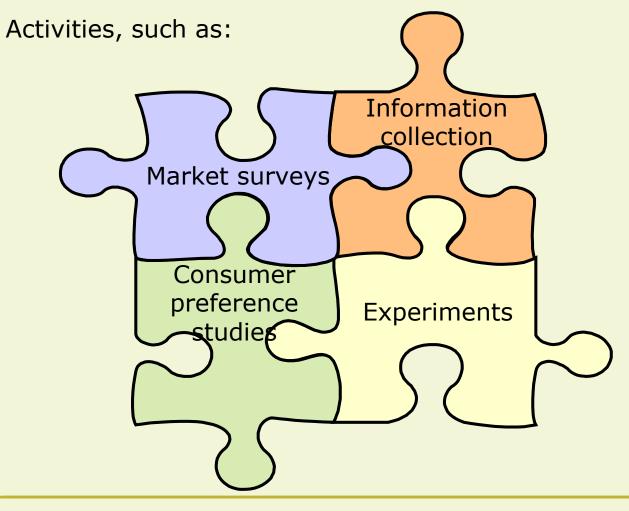
- Planning by objectives is a systematic planning process to achieve specific research objectives
- Domain is defined as an area of work with potential for development
- Development of potentials may face technical, environmental, institutional and socio-economic constraints
- These must be addressed by the identified projects

Types of Constraints

- Constraints can be classified into two types
- *Biophysical* constraints
- Non-biophysical constraints that can be solved by interventions in other areas of development
- AR4D recognizes that both constraints need to be considered for people-level impact
- Partnerships are one way to do this

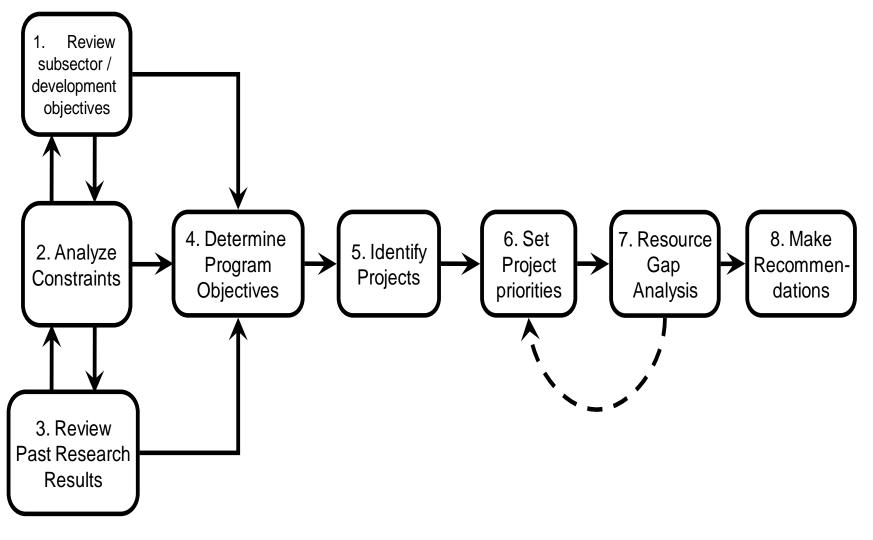

Focus of Research and Extension Program

- A research and development program may be focused on a thematic area related to people-level impact, disciplinary area or geographical location
- FPDA's thematic areas:
 - Marketing Systems
 - Scaling of Production and Supply
 - Productivity Improvement
 - Information management and Communication
 - Enabling Legal and Policy Environment
 - Institutional Capacity Strengthening
- Focus is determined by paradigm


Composition of a Program

- A program is composed of research and development projects fitting together to form a whole
- A program dealing with a group of commodities may have a sub-program for each commodity, with each sub-program having its own projects

A program consists of projects


What comprises a project?

Program Formulation Steps

- 1. Review sub-sector and the development objectives of the sub-sector
- 2. Analyze constraints and opportunities
- 3. Review previous research and extension
- 4. Determine research objectives and strategies
- 5. Identify projects
- 6. Prioritize projects
- 7. Conduct a human resources gap analysis
- 8. Make recommendations for program implementation and adoption of the technologies produced

Figure 1. Program Planning Steps

